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Synopsis
Evidence from animal models and preliminary studies in humans indicate that calorie restriction
(CR) delays cardiac aging and can prevent cardiovascular disease. These effects are mediated by a
wide spectrum of biochemical and cellular adaptations, including redox homeostasis, mitochondrial
function, inflammation, apoptosis and autophagy. Despite the beneficial effects of CR, its large-scale
implementation is challenged by applicability issues as well as health concerns. However, preclinical
studies indicate that specific compounds, such as resveratrol, may mimic many of the effects of CR,
thus potentially obviating the need for drastic food intake reductions. Results from ongoing clinical
trials will reveal whether the intriguing alternative of CR mimetics represents a safe and effective
strategy to promote cardiovascular health and delay cardiac aging in humans.
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1. Introduction
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in Western
countries [1], and it is estimated that by 2020 up to 40% of all deaths will be due to CVD [2].
The impact of CVD is especially pronounced in older populations, where remarkably high
prevalence of CVD and incident events are observed, resulting in high levels of disability and
mortality [3]. Numerous modifiable risk factors for CVD have been identified, including
smoking, hypertension, dyslipidemia, abdominal obesity, impaired insulin sensitivity, and
sedentary lifestyle [4]. In addition, advances in the field of cardiovascular biology have
unveiled several biomarkers associated with increased CVD risk. Examples include alterations
in the redox state favoring a pro-oxidant milieu, enhanced production of inflammatory
cytokines, and high levels of pro-inflammatory enzymes, hemostatic factors and adhesion
molecules [3,5].

Despite great progress in the diagnosis and management of CVD, the prevalence of heart failure
(HF), the final common pathway of many heart diseases, has reached epidemic proportions
among older persons [6]. This condition represents a major determinant of chronic disability
in the elderly [7]. Furthermore, HF is characterized by extremely poor prognosis, with 1-year
mortality rate exceeding 50% in those aged 85 years or older [8]. Hence, there is an urgent
need for effective strategies to reduce the incidence and improve the prognosis of CVD,
especially in geriatric populations.

Calorie restriction (CR) without malnutrition is to date the most effective intervention for
improving health, maintaining function and increasing mean and maximum lifespan in a variety
of species [9]. The anti-aging properties of CR reside in the prevention or retardation of several
degenerative diseases, including CVD, cancer, neurodegenerative disorders, diabetes and
autoimmune diseases [10]. As a result, experimental rodents subjected to lifelong CR display
up to 60% maximum lifespan extension compared to ad libitum (AL) fed controls [11]. The
magnitude of this effect suggests that dietary restriction affects global and fundamental
biological processes underlying aging. In support of this, CR has been shown to delay the onset
of age-related cardiac alterations and ameliorate virtually all known CVD risk factors both in
experimental animals and humans [12-14]. This protection stems from a multitude of
adaptations, such as blood pressure reduction, alterations of the lipoprotein profile, improved
glucoregulation, reduction in sympathetic nervous system drive, and hormonal changes [10].

2. Cellular mechanisms of cardioprotection by calorie restriction
At the cellular level, cardioprotection by CR is mediated by various mechanisms, among which
attenuation of oxidative stress, mitochondrial dysfunction and inflammation, and a favorable
modulation of apoptosis and autophagy are prominent contributors (Table 1). The role that
each of these adaptations plays in cardioprotection is discussed in this brief review.

2.1. Oxidative stress and mitochondrial dysfunction
The free radical theory of aging, first proposed by Haman in the 1950s [15] and subsequently
refined [16-19], is currently the most widely accepted theory of aging. The main tenet of this
theory is that the accumulation of oxidative damage to cellular constituents over the lifespan
causes age-related tissue deterioration and ultimately disease conditions. Free radicals and
other reactive species are continuously generated by numerous biological processes, with
mitochondrial respiration considered the main source. To protect itself against oxidative
damage, the cell is equipped with enzymatic [e.g., superoxide dismutase (SOD), glutathione
peroxidase (GPx), catalase, thioredoxins] as well as non-enzymatic (e.g., glutathione, vitamin
E, vitamin C, β-carotene, uric acid) antioxidant defenses. Redox imbalance, resulting from
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increased oxidant generation and/or reduced antioxidant capacity, causes structural and
functional cellular alterations, eventually leading to aging and disease.

Analyses of heart tissues of old rodents [20-25] and humans [26] have shown evidence of
elevated levels of oxidative damage to proteins, lipids and DNA. In addition, oxidative stress
is involved in the pathogenesis of myocardial ischemia-reperfusion injury [27], cardiac
remodeling after myocardial infarction [28], left ventricular hypertrophy (LVH), and HF
[29]. Furthermore, oxidative damage plays a central role in endothelial dysfunction both during
aging [30] and in the setting of CVD [31].

Studies have shown that CR can prevent or even reverse the cardiovascular accrual of oxidative
damage in a variety of experimental settings. Sohal et al. [21] found that cardiac DNA oxidative
damage, as determined by 8-hydroxydeoxyguanosine content, was increased in old mice
compared to younger controls. Importantly, mice subjected to 40% CR displayed a significant
reduction in DNA oxidation relative to AL-fed rodents. Similar findings were reported in rats
kept on an alternate-day fasting regimen [23]. In addition, protein carbonyl content (a marker
of protein oxidation) increased in the heart of AL-fed rats over the course of aging, which was
attenuated by lifelong 40% food intake reduction [20]. Mitigation of protein oxidative damage
was sustained by reduced mitochondrial generation of superoxide anion (O2

• −) and hydrogen
peroxide (H2O2) [20]. In addition, catalase activity was reduced during aging in AL-fed mice,
whereas an opposite pattern was evident in CR animals. Furthermore, Leeuwenburgh et al.
[22] demonstrated that lifelong 40% CR prevented the age-related accumulation of o-tyrosine
and o,o′-dityrosine in the mouse heart. It has also been reported that 12-month 40% CR
decreases mitochondrial H2O2 generation, free radical leak and oxidative damage to
mitochondrial DNA (mtDNA) in the heart of aged rats [32]. A similar dietary regimen also
counteracted the age-dependent increase in glycoxidative and lipoxidative damage to rat heart
mitochondrial proteins [33]. A later study from the same group demonstrated that even 4-month
40% CR was sufficient to elicit a significant reduction in mitochondrial protein glycoxidation
and lipoxidation in the heart of young rats [34]. The efficacy of short-term CR in attenuating
heart oxidative stress was further demonstrated by Diniz et al. [35], who reported decreased
myocardial levels of lipoperoxidation in young rats subjected to 50% CR for 35 days. In
addition, CR rats displayed increased activity of the antioxidant enzymes GPx and catalase
relative to AL-fed controls. Finally, 40% CR for 3 months reduced cardiac mitochondrial
H2O2 generation and protein carbonyl content in middle-aged rats [36].

Although most studies have shown attenuation of cardiac oxidative damage and/or
mitochondrial oxidant generation with CR, a few reports did not detect such adaptations [37,
38]. This discrepancy may be ascribed to differences in the dietary regimens employed and/or
species-specific differential susceptibility to CR. However, it should also be considered that
the heart, similar to skeletal muscle, contains two bioenergetically [39] and structurally [40]
distinct mitochondrial subpopulations: subsarcolemmal mitochondria (SSM), located beneath
the sarcolemma, and intermyofibrillar mitochondria (IFM), arranged in parallel rows between
the myofibrils. Notably, these two populations are differentially affected by aging and display
different susceptibility to CR [25]. However, most studies have analyzed either SSM only or
a mixed population of SSM and IFM. Our laboratory has recently investigated the effect of
lifelong mild CR (i.e., 8% calorie intake reduction), alone or in combination with voluntary
wheel running, on mitochondrial H2O2 generation and markers of oxidative stress in cardiac
SSM and IFM of old rats [41]. CR combined with exercise reduced H2O2 generation in both
mitochondrial populations. In addition, activity of the mitochondrial SOD isoenzyme
(MnSOD) was significantly decreased in SSM and IFM from wheel runners, likely as a result
of reduced O2

• − production. However, despite the attenuation of mitochondrial oxidant
generation, levels of protein and lipid oxidative damage were not affected by either
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intervention. In another study, Kalani et al. [42], employing an analogous experimental model,
found increased plasma total antioxidant capacity in 8% CR rats either sedentary or exercised.

Besides cardiac aging, oxidative stress is also involved in the pathogenesis of several
cardiovascular conditions. Mitochondria of the failing heart produce large amounts of reactive
oxygen species (ROS) [43]. Moreover, other sources of oxidants (e.g., xanthine oxidase and
non-phagocytic NADPH oxidase) can contribute to the development of HF, cardiac remodeling
and LVH [44-46]. Furthermore, xanthine oxidase and NADPH oxidase-derived free radicals
play a role in the pathogenesis of endothelial dysfunction via scavenging of nitric oxide (NO)
by O2

• − [47,48]. Increased ROS generation and oxidative damage are also responsible for
cardiac contractile dysfunction following ischemia-reperfusion [27]. Seymour et al. [49]
demonstrated that 15% CR reduced cardiac lipid peroxidation in Dahl salt-sensitive rats fed a
high-salt diet. Mitigation of oxidative stress ameliorated left ventricular remodeling, improved
diastolic function and cardiac index, and delayed the onset of cardiac cachexia. It was also
reported that lifelong 40% CR attenuated cardiac oxidative damage in middle-aged rats
following myocardial ischemia-reperfusion [50].

Regarding the effects of CR on endothelial function, short-term (i.e., 3 months) 30% food
restriction abolished the increases in mitochondrial ROS generation and NADPH-dependent
O2

• − production in the coronary endothelium and aortic wall of spontaneously diabetic rats
[51]. Furthermore, CR prevented the decrease in total SOD activity in the thoracic aorta. These
changes resulted in reduced levels of lipid peroxidation and increased NO availability.
Moreover, CR combined with low-intensity physical activity reduced oxidative stress and
improved acetylcholine-dependent vasodilation in healthy, middle-aged obese subjects [52].

In summary, although the magnitude of the anti-oxidant effect is influenced by a number of
factors, including the degree of dietary restriction, the age when CR is initiated and the duration
of the intervention, a wealth of evidence supports a protective effect of CR against oxidative
stress in the cardiovascular system.

2.2. Inflammation
Chronic low-grade inflammation is acknowledged as a powerful, independent risk factor for
CVD [53]. Moreover, chronic inflammation may be a converging process linking normal aging
with age-related diseases [54]. According to this proposition, the age-dependent increase in
oxidative stress activates redox-sensitive transcription factors (e.g., NF-κB), which in turn
enhance the expression of inflammatory cytokines, cellular adhesion molecules (CAMs) and
pro-inflammatory enzymes [54]. Among the inflammatory biomarkers predictive of
cardiovascular events, C-reactive protein (CRP), interleukin 6 (IL-6) and tumor necrosis factor-
α (TNF-α) have been the most extensively investigated. In addition, myeloperoxidase (MPO)
has recently emerged as a novel biomarker of inflammation and oxidative stress in CVD
[55]. Of note, it has become clear that these molecules are not mere risk markers, but they
indeed play an active role in the pathogenesis of CVD [55-58]. Besides cytokines, CAMs have
also been identified as important mediators in the inflammatory process involved in
atherosclerosis [59]. Notably, TNF-α and IL-1β are potent inducers of CAM expression [60].

Convincing evidence indicates that CR attenuates the age-related increase in systemic
inflammation. Old rodents kept on lifelong 40% CR displayed reduced levels of various
inflammatory biomarkers, including TNF-α, IL-6, CRP and several CAMs [42,61-63].
Furthermore, Kalani et al. [42] found that lifelong 8% CR either alone or combined with
voluntary wheel running prevented the increase in plasma CRP levels in old rats. In addition,
CR attenuated the age-related increase in MPO activity in the rat kidney [64]. Mitigation of
systemic inflammation by CR has also been reported in non-human primates [65]. Moreover,
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similar anti-inflammatory effects can be obtained with CR in human subjects [14,66,67], even
when dietary restriction is initiated late in life [68].

Regarding the effects of CR on inflammation in the presence of CVD, lifelong 40% food intake
reduction attenuated the myocardial inflammatory response to ischemia-reperfusion in rats
[50]. Furthermore, 15% CR reduced the plasma levels of IL-6 and TNF-α in salt-sensitive rats
fed a high-salt diet [49]. Three-month 30% CR also prevented the increase in transforming
growth factor-β1 (TGF-β1) levels in the aorta of spontaneously diabetic rats [51].

In summary, available evidence indicates that CR protects against elevation in systemic
inflammation. Moreover, this effect may be obtained even with mild restrictions in food intake,
which is likely to be more feasible for humans to maintain over the long-term.

2.3. Apoptosis
Apoptosis is a highly conserved and tightly regulated process of programmed cell death,
resulting in cellular self-destruction without the induction of inflammation or damage to the
surrounding tissue. Apoptosis is essential for numerous biological processes, including
embryogenesis and development, cellular turnover, tissue homeostasis, and several
immunological functions [69]. However, it is postulated that accelerated elimination of
irreplaceable post-mitotic cells, such as cardiomyocytes, may contribute to age-associated loss
of function and diseases [70]. Cardiomyocyte removal through apoptosis increases with
advancing age [71]. It is hypothesized that enhanced cardiomyocyte apoptosis combined with
insufficient replenishment by cardiac stem cells may play a central role in age-related heart
remodeling [72,73]. Apart from aging, cardiomyocyte apoptosis occurs as a consequence of
ischemia-reperfusion insult [74]. In addition, myocyte loss due to apoptosis is increased in
patients with end-stage HF [75]. Elevated levels of cardiomyocyte apoptosis have also been
detected in diabetic patients [76], suggesting a role for programmed cell death in diabetic
cardiomyopathy. Moreover, apoptosis of smooth muscle cells and macrophages within
atherosclerotic plaques contributes to disease progression and plaque instability [77].

Recent evidence indicates that CR mitigates age-related apoptosis in the heart. Analysis of
high-density oligonucleotide microarrays revealed that 40% CR started at middle age reduced
the expression of pro-apoptotic genes and up-regulated anti-apoptotic transcripts in aged mouse
heart [78]. In addition, short-term mild CR may protect the aging myocardium from apoptosis
by promoting a splicing shift of the apoptosis regulator Bcl-X, favoring the anti-apoptotic
variant Bcl-XL [79]. A recent study from our laboratory has also shown that lifelong 40% CR
counteracts the age-related increase in mitochondrial permeability transition pore (mPTP)
opening susceptibility in rat cardiac IFM [80]. Notably, opening of the mPTP is considered an
important mechanism for the initiation of mitochondria-mediated apoptosis [81]. Interestingly,
6-month 35% CR reduced the extent of cardiac apoptotic DNA fragmentation in rats subjected
to ischemia-reperfusion injury [82]. This effect translated into improved recovery of left
ventricular function and limitation of infarct size.

Collectively, these findings indicate that CR attenuates age-associated cardiomyocyte
apoptosis. The effectiveness of dietary restriction in mitigating cell death in CVD has not yet
been thoroughly investigated. However, given the major role of inflammation [83] and
oxidative stress [84] in both age- and disease-related apoptosis, it is conceivable that CR may
also counteract cardiomyocyte loss associated with CVD progression.

2.3. Autophagy
Autophagy is an evolutionary conserved process that allows eukaryotic cells to degrade and
recycle long-lived proteins and organelles [85]. Besides this housekeeping function, the
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autophagic program is also involved in regulating cell growth and the cellular response to
starvation, hypoxia, and invading pathogens [86]. As a cellular quality control mechanism,
autophagy is essential for degradation of defective intracellular components, thus preventing
the accumulation of cellular “garbage” and its detrimental consequences [19]. Three types of
autophagy have been described: macroautophagy, microautophagy, and chaperone-mediated
autophagy [87]. Notably, macroautophagy is the only mechanism so far attributed to the
degradation of dysfunctional and damaged mitochondria. During macroautophagy
(subsequently referred to as autophagy), cells typically sequester portions of cytoplasm, which
can include organelles, into double membrane-bound vacuoles (autophagosomes) that are then
delivered to lysosomes for degradation [88]. Imperfect autophagy results in altered turnover
of cellular constituents, including mitochondria. Furthermore, insufficient digestion of
oxidatively damaged macromolecules and organelles leads to the accumulation of
undegradable material (e.g., lipofuscin) within the lysosomal compartment [89]. In turn,
lipofuscin accumulation may act as a sink for lysosomal enzymes, further impairing the
degradation of damaged mitochondria [19].

The importance of autophagy for cardiomyocyte health and survival has been demonstrated in
autophagy-deficient animals and cell models. For example, in adult mice, cardiac-specific,
temporarily controlled deficiency of Atg5, a protein required for autophagy, led to cardiac
hypertrophy, left ventricular dilatation, and contractile dysfunction, accompanied by increased
levels of ubiquitination (a process targeting proteins for degradation) [90]. In the same study,
Atg7, a protein essential for autophagosome formation, was silenced in rat neonatal
cardiomyocytes, resulting in reduction of cell viability as well as morphological and
biochemical features of cardiomyocyte hypertrophy [90]. Furthermore, lysosome-associated
membrane protein 2 (LAMP2)-deficient mice showed excessive accumulation of autophagic
vacuoles and impaired autophagic degradation of long-lived proteins, resulting in
cardiomyopathy [91]. Collectively, these findings indicate that constitutive cardiomyocyte
autophagy is required for protein quality control and normal cellular structure and function
under the basal state.

The role of autophagy in cardiac disease is still controversial. Increased numbers of
autophagosomes have been observed in cardiac tissues of patients with cardiovascular
disorders such as LVH [92], aortic valve stenosis [93], hibernating myocardium [94], and HF
[95]. However, it is unclear whether autophagy contributed to cell death in these conditions or
was upregulated in an attempt to prevent it. On the other hand, Yan et al. [96] proposed that
in chronically ischemic myocardium, autophagy might function cardioprotectively. This
hypothesis was supported by a significant increase in the expression of autophagic proteins
and the occurrence of autophagic vacuoles in viable but unlysed cells. In contrast, autophagic
markers were down-regulated in the infarcted myocardium. In addition, the autophagic
degradation of damaged organelles, misfolded proteins and protein aggregates, and the
importance of autophagy in nutrient supply and maintenance of energy homeostasis in times
of limitation (e.g., during ischemia) suggest a cardioprotective role.

Preservation of well-functioning autophagy may be particularly important during aging. In
fact, the increase in oxidative damage and the concomitant increased frequency of misfolded
and damaged proteins, protein aggregates and damaged cell organelles impose a higher demand
for functional autophagic cellular quality control at old age. However, it appears that the
efficiency of autophagy decreases with age [97-99]. Interestingly, CR has been shown to
attenuate the age-related decline of autophagy in the rat liver [100]. While starvation has often
been utilized to stimulate autophagy, there are limited data on the effect of lifelong CR on age-
related changes in autophagy in the heart. We have recently reported that lifelong 40% CR
increased the expression of autophagic markers in the heart from adult and old rats compared
to AL controls [101]. Although further research is warranted, it is conceivable that upregulation
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of autophagy by CR may play a cardioprotective role by attenuating oxidative damage accrual
during aging and CVD.

4. Evidence for cardioprotection by calorie restriction in humans
Adaptations elicited by long-term CR in human subjects appear to resemble those observed in
animal models. Remarkably, inhabitants of Okinawa Island, whose traditional diet contains
∼20% and ∼40% fewer calories compared to inland Japan and the U.S., respectively, have the
longest life expectancy and the greatest percentage of centenarians in the world. The
extraordinary longevity and disability-free lifespan of Okinawans result from decreased
incidence of conditions such as CVD, stroke and cancer. Although Okinawan centenarians
appear to possess a genetic “survival advantage” [102], it is likely that a significant part of their
longevity secret resides in their nutrient-rich, low-calorie diet [103].

Apart from this case of naturally occurring CR, accumulating evidence indicates that dietary
restriction results in significant improvements in traditional cardiovascular risk factors (e.g.,
blood pressure, blood glucose, lipids, body composition) among overweight and obese subjects
[104-109] as well as in lean individuals [14,66,110]. In contrast, the effect of CR on emerging
CVD risk factors (e.g., biomarkers of oxidative stress and inflammation) is less established.
However, recent studies suggest that CR may have significant effects on these biological
processes as well. Lower levels of CRP, TNF-α, and TGF-β1 have been detected in middle-
aged healthy persons on long-term CR (i.e., 3−15 years) compared to age- and gender-matched
healthy controls consuming typical Western diets [14,66]. Interestingly, diastolic heart
function, as assessed by Doppler echocardiography, displayed a more youthful pattern in CR
individuals relative to controls [14]. Furthermore, in a 6-month randomized controlled trial
examining the effect of CR (25% of baseline energy requirements) on biomarkers of longevity
and oxidative stress in healthy, non-obese adults, dietary restriction was found to reduce DNA
damage in white blood cells (WBC) [111], improve whole body insulin sensitivity [111],
enhance skeletal muscle mitochondrial biogenesis [112], and produce favorable changes in
systemic inflammation, coagulation, lipid, and blood pressure [113,114]. In a recent study, 12-
month CR (20% of baseline energy requirements) improved glucose tolerance and reduced
DNA and RNA oxidative damage in WBC of healthy normal and overweight persons aged 50
−60 years [115,116]. Furthermore, Bosutti et al. [67] reported that 20% CR for 2 weeks
prevented the increase in circulating levels of CRP and IL-6 in normal weight, healthy men
subjected to experimental bed rest. In addition, an 8-day very low calorie diet (600 kcal/day)
increased plasma levels of antioxidants and erythrocyte SOD activity, while decreasing levels
of lipid peroxidation, in middle-aged obese subjects.

The biological effects of CR in older persons have not yet been thoroughly investigated.
However, in a large-scale trial conducted in obese, older adults (≥ 60 years, n = 316), 18-month
diet-induced weight loss reduced markers of systemic inflammation (i.e., CRP, IL-6 and
soluble TNF-α receptor 1) [68]. Interestingly, weight loss induced by combining diet and
exercise did not modify any of the inflammatory biomarkers to a greater extent than diet alone.
However, the magnitude of weight loss was lower in the combined program, suggesting that
the degree of weight loss or CR may be the key factor contributing to these changes.

In summary, based on studies conducted to date, moderate CR appears to be an effective means
for reducing CVD risk in both younger and older persons, including normal weight and
overweight individuals. As observed in experimental animals, cardioprotection by CR in
humans appears to be mediated by improvement in mitochondrial function and reduction in
systemic levels of oxidative stress and inflammation.
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5. Applicability of calorie restriction: calorie restriction mimetics as an
alternative strategy

Findings from the obesity literature indicate that most persons are reluctant to engage in long-
term CR. In addition, many individuals are unable to sustain CR-induced weight loss, possibly
due to internal feedback systems that signal the body to increase food intake or decrease energy
expenditure in response to weight loss. Moreover, weight loss may not be advisable in older
persons, as it can accelerate age-related muscle loss [118]. Importantly, low body mass index
has been associated with increased risk of disability and mortality in older populations [119,
120]. Furthermore, people practicing long-term severe CR may experience several adverse
events, including undesired changes in physical appearance, loss of strength and stamina,
menstrual irregularities, infertility, loss of libido, osteoporosis, cold sensitivity, slower wound
healing, and psychological conditions such as food obsession, depression and irritability [10].

Thus, a critical research question is what degree of CR is tolerable in humans, in order to obtain
beneficial physiological changes without incurring adverse events. Animal studies have shown
that even mild CR (i.e., 8% calorie intake reduction) may elicit cardioprotective effects [41,
42], thus obviating the need for substantial food intake reductions. If findings from animal
studies can be translated to humans, then the amount of CR required for cardioprotection may
be more achievable than previously thought. Nevertheless, it will likely be decades before this
issue is resolved.

Given the questionable feasibility of long-term dietary restriction, the field of CR mimetics
has become a topic of increasing scientific focus. As a general definition, CR mimetics are
agents or interventions that are capable of reproducing the effects of CR without requiring food
intake reduction [121]. Since the identification of the first agent (2-deoxy-D-glucose) by Lane
et al. in 1998 [122], the list of putative CR mimetics has increasingly grown (Table 2). For
many of these agents, however, there is little, if any, scientific evidence supporting their
efficacy and/or safety.

Among CR mimetics, resveratrol has received the greatest attention. Resveratrol is a naturally
occurring polyphenol found in red wine, the notorious cardioprotective effects of which are
invoked to explain the so-called “French paradox” [123]. One salient feature of resveratrol
resides in its ability to activate sirtuins, which in turn are prominent mediators of lifespan
extension by CR [124]. In fact, resveratrol was found to extend the lifespan and delay the onset
of aging phenotypes in short-lived organisms by modulating sirtuin signaling [125-127]. With
respect to the cardiovascular system, resveratrol has been shown to inhibit cardiomyocyte
apoptosis [128], protect the myocardium against ischemia-reperfusion injury [129], prevent
LVH [130], improve endothelial function [131], inhibit platelet aggregation [132], and reduce
inflammation [133]. In a recent study, resveratrol improved survival and reduced the
prevalence of cardiac pathology in mice fed a high-calorie diet [134]. Moreover, resveratrol-
supplemented mice displayed better insulin sensitivity and enhanced liver mitochondrial
biogenesis compared to animals fed either a standard or high-calorie diet. Of note, short-term
supplementation with a nutraceutical mixture containing resveratrol induced a transcriptional
shift in murine heart resembling that detected with long-term CR [135]. Lekakis et al. [136]
reported that consumption of a red grape polyphenol extract containing resveratrol improved
endothelial function in patients with coronary heart disease. Furthermore, 4-week
supplementation with a lyophilized grape powder reduced blood lipids, plasma TNF-α and
urinary F(2)-isoprostane levels in both pre- and postmenopausal women [137].

In summary, preclinical studies, as well as small clinical trials, appear to support a
cardioprotective effect of resveratrol. Results from the numerous ongoing clinical trials testing
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this CR mimetic will likely provide insightful information concerning the efficacy and long-
term safety of resveratrol supplementation in human populations.

6. Summary
Despite the indisputable evidence supporting a wide range of beneficial effects of CR,
excessive consumption of calorie-dense, nutrient-poor foods, combined with a sedentary
lifestyle, has provoked an obesity epidemic in industrialized countries. Adoption of healthier
eating habits is feasible by virtually anybody; however, most people are unwilling or unable
to engage in substantial food intake restrictions, such as those employed in experimental
settings. Furthermore, older persons may be especially prone to experience detrimental effects
from dietary restriction if it is excessive or implemented too rapidly. Hence, the optimal level
of CR, tailored to specific age groups, is currently unknown and needs to be explored in future
studies. Mild CR regimens may provide a valid alternative, as they produce, at least in animal
models, significant cardioprotective effects. An intriguing option is represented by CR
mimetics, among which resveratrol has emerged as the leading candidate. Results from ongoing
clinical trials will reveal whether resveratrol supplementation may provide an effective and
safe strategy to improve cardiovascular health in human subjects. Until then, when indulging
ourselves with a glass of wine, we can entertain the hope that it does not just warm our heart:
it might actually protect it!
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Table 1

CR-induced cellular and molecular changes in aging and CVD.

  Effects of CR

Aging CVD

Oxidative stress

Cardiac DNA damage ↓ ---
Heart mitochondrial DNA damage ↓ ---
Cardiac protein oxidation ↓ ---
Heart mitochondrial protein oxidation ↓ ---
Heart mitochondrial oxidant generation ↓ ---
Heart antioxidant defenses ↑ ↑
Cardiac nitrosative damage ↓ ---
Cardiac lipid peroxidation ↓ ↓
Endothelium mitochondrial oxidant generation --- ↓
Vascular oxidative damage ↓ ↓
Endothelial NO availability --- ↑

Inflammation

Myocardial TNF-α expression --- ↓
Myocardial IL-1β expression --- ↓
Systemic TNF-α levels ↓ ↓
Systemic soluble TNF-α receptor 1 levels ↓ –
Systemic IL-6 levels ↓ ↓
Systemic CRP levels ↓ ---
Systemic CAM levels ↓ ---
Vascular CAM expression ↓ ---
Vascular TGF-β1 levels --- ↓

Apoptosis

Cardiomyocyte apoptosis ↓ ↓
Heart mitochondrial apoptotic signaling ↓ ---

Autophagy

Cardiac autophagy ↑ ---
Vascular autophagy --- ---

Abbreviations: CAM, cellular adhesion molecule; CR, calorie restriction; CRP, C-reactive protein; CVD, cardiovascular disease; IL, interleukin; NO,
nitric oxide; TGF, transforming growth factor; TNF, tumor necrosis factor.

↑ = increase; ↓ = decrease; --- = not investigated
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Table 2

Candidate CR mimetics listed in alphabetic order. Primary CR mimicking properties of each compound are shown
in the right column.

Compound CR mimicking properties

2-deoxyglucose Glycolytic inhibitor
4-phenylbutyrate Antioxidant
Acarbose Glucose absorption inhibitor
3,5-dimethylpyrazole Insulin secretion inhibitor, autophagy enhancer
Adiponectin IGF-1 signaling inhibitor
All-trans retinoic acid IGF-1 signaling inhibitor
Alpha-lipoic acid Antioxidant
Alpha-phenyl-tert-butyl nitrone Antinflammatory, antioxidant
Aminoguanidine Antiglycator
Brain-derived neurotrophic factor Neuroprotector
Buformin Gluconeogenesis inhibitor, insulin sensitizer
Butein Sirtuin activator
Carnitine Mitochondrial function preserver
Carnosine Antiglycator
Coenzyme Q10 Antioxidant
Daidzein IGF-1 signaling inhibitor, glucagon inhibitor
Fenretinide IGF-1 signaling inhibitor
Fisetin Sirtuin activator
Genistein IGF-1 signaling inhibitor
Glyburide Insulin sensitizer
Gymnemoside Glucose absorption inhibitor
Iodoacetate Glycolytic inhibitor
Kaempferol IGF-1 signaling inhibitor, antioxidant
Metformin Gluconeogenesis inhibitor, insulin sensitizer
Omega-3 polyunsaturated fatty acids Antinflammatory
Octreotide IGF-1 signaling inhibitor
Phlorizin Urinary glucose excretion promoter
Piceatannol Sirtuin activator
Pioglitazone PPAR-γ agonist and insulin sensitizer
Quercetin IGF-1 signaling inhibitor, antioxidant
Rapamycin IGF-1 signaling inhibitor
Resveratrol Sirtuin activator, antinflammatory, antioxidant
Rosiglitazone PPAR-γ agonist, insulin sensitizer
SC-alpha alpha delta 9 IGF-1 signaling inhibitor
Tamoxifen IGF-1 signaling inhibitor

IGF-1: insulin-like growth factor-1; PPAR-γ: peroxisome proliferator-activated receptor-γ.
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