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Abstract

As the number of older adults continues to rise worldwide, the prevention of physical disability

among seniors is an increasingly important public health priority. Physical exercise is among the

best known methods of preventing disability, but accumulating evidence indicates that

considerable variability exists in the responsiveness of older adults to standard training regimens.

Accordingly, a need exists to develop tailored interventions to optimize the beneficial effects of

exercise on the physical function of older adults at risk for becoming disabled. The present review

summarizes the available literature related to the use of adjuvant or alternative strategies intended

to enhance the efficacy of exercise in improving the physical function of older adults. Within this

work, we also discuss potential future research directions in this area.

1. Introduction

Physical function is an important predictor of health outcomes in older adults. The capacity

to perform basic physical functions is a central aspect of health-related quality of life1 and a

key predictor of hospitalization, surgical outcomes, and mortality.2–5 Accordingly,

maintenance of independent functioning is a critical factor in preserving the health and well-

being of older adults. In the U.S., nearly half of the 37.3 million persons aged ≥ 65 years

report having one or more physical limitations in performing essential daily tasks.6 The

adverse outcomes associated with these limitations have created a significant burden on
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healthcare systems, which is likely to become more substantial given that older adults

represent the fastest growing segment of the population.7,8 As a result, the development of

methods to maintain the health and independence of older persons is an important public

health goal.

To date, physical exercise is the only intervention consistently demonstrated to attenuate

functional decline among seniors (Figure 1).9–13 Regardless of dependent outcome, most

studies in older adults show some degree of benefit to exercise when based on changes in

the mean score of a given performance metric. However, these benefits are not observed in

all individuals and the change in performance is quite variable.14 A variety of participant-

specific factors may limit gains in functional performance. For example, Manini et al.

recently reported that obesity attenuated exercise-induced improvements in physical

function among older adults in the Lifestyle Interventions for Independence Pilot Study.15 In

the same cohort, Buford et al. observed that – independent of obesity – participants who

took ACE inhibitors derived greater physical benefit from the exercise than non-users.16

Importantly, each of these findings was independent of differences in confounding

characteristics as well as the volume of exercise performed. Accordingly, phenotype (i.e.

obesity) and medication use each had significant and yet independent influences on the

responsiveness of the participants to training.

These findings suggest that exercise may be necessary, but insufficient, for preserving

physical function and preventing disability among many older adults.17 Consequently,

alternative or adjuvant strategies appear necessary to optimize the functional benefits of

exercise. While individual studies certainly exist which have evaluated such strategies, a

synthesized discussion is needed to demonstrate the tremendous potential of these

approaches. The population specificity that may accompany the efficacy of each adjuvant

should also be examined. Accordingly, the present manuscript reviews the extant literature

related to the efficacy of multimodal and alternative exercise interventions on functional

outcomes in older adults and, when data are available, sub-groups of seniors most likely to

benefit from these interventions.

2. Pharmacologic administration

In recent years, studies have evaluated the use of pharmacologic agents for the prevention

and treatment of age-related sarcopenia (i.e., loss of muscle mass and strength) and

functional decline. This approach has the benefit of requiring minimal effort on the part of

patients, an important point given that the initial effort required to begin an intervention

program is a primary barrier to lifestyle-based treatments.18 Disappointingly, however,

evidence from studies evaluating the effects of mono-modal pharmacologic strategies on

physical function have been mixed at best (see discussion below). Despite these equivocal

findings, the potential use of pharmacotherapy for improving physical function in older

adults should not be abandoned as the efficacy of such medications may be at least partially

dependent on the lifestyle habits of the individual. For instance, others have proposed that

exercise may stimulate adaptations to pharmaceuticals which are not observed in response to

the drug alone.19 Findings from pre-clinical models provide initial support for this approach.

For example, despite showing no effect when given to mice in isolation, an oral PPARδ
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agonist increased exercise tolerance when given in conjunction with an exercise training

regimen.20 Thus, the strategy of combining potentially beneficial medications with chronic

exercise may be more efficacious than either intervention alone. Here, we briefly discuss the

existing evidence and potential utility – in isolation and combined with exercise – of several

pharmacologic agents implicated as potential mediators of functional decline.

2.1. Testosterone

Testosterone supplementation has gained interest recently as a possible method for

improving physical function and health in older men, evidenced by a 500% increase in the

number of testosterone prescriptions over the past several decades.21 This interest is well-

founded considering that testosterone production declines progressively with age22 and

testosterone supplementation may have beneficial effects on body composition.23–25 Over

the past 15 years, numerous studies have evaluated the effects of supplemental testosterone

on the body composition and physical function of older men. Despite the strong theoretical

basis for potential improvements in function, the evidence to date is inconclusive.

Ottenbacher et al. published a meta-analysis focusing on changes in muscle strength in

response to testosterone or dihydrotestosterone (DHT) replacement therapy among healthy

men 65 years and older.26 Based on findings from 11 randomized trials, these authors

concluded that testosterone/DHT therapy produced a moderate increase in lower-extremity

strength; however the effect size (0.63) was dramatically influenced by a single study.

Furthermore, the quality of the study design appeared to greatly influence results with lower

quality studies reporting larger effect sizes. The same year, Nair et al. published a seminal

study on the longer-term (2 years) effects of testosterone supplementation among

hypogonadal men aged ≥ 60 years.27 These authors reported that 5 mg/day of testosterone

increased bioavailable testosterone concentrations by 30.4 ng/dL compared to placebo, yet

did not result in any significant improvements in physical function. In contrast, Travison et

al. recently reported that 6 months of testosterone gel supplementation (10 g/d) improved

skeletal muscle strength and stair-climbing power, but not walking speed or self-reported

function, in hypogonadal men with mobility limitation.28 Though speculative, it is possible

that the latter study displayed improvements in function due to either the higher dosage of

testosterone or because they were already mobility limited. Though evidence regarding the

use of testosterone supplementation by hypogonadal, men has been mixed, studies have

demonstrated greater efficacy among older men with specific health conditions. For

example, authors have reported increases in skeletal muscle mass and strength among older

men with HIV infection29,30 COPD,31 acute illness,32 or undergoing chronic glucocorticoid

therapy.33

Previous research also demonstrates the potential utility of testosterone supplementation

when given in conjunction with resistance exercise training. For instance, Casaburi et al. 31

reported that, among men between aged 55–80 years with COPD, the combination

intervention induced greater increases in lean body mass and maximum leg press strength

than either resistance exercise or testosterone alone. Unfortunately, the authors did not

report changes on any additional measures of physical function. Sullivan et al. also

investigated the benefits of low- and high-intensity resistance-training protocols for frail

men ≥ 65 years of age when completed with or without regular testosterone injections.34
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These authors found that testosterone injections induced muscle hypertrophy but did not

improve muscle strength or functional performance. Additionally, testosterone

supplementation did not produce a synergistic interaction with exercise. These authors

speculated that the null findings could be at least partially attributable to sub-optimal

sensitivity of the functional measures utilized or due to the relatively short intervention

duration (12 weeks). However, a another study using a similar 2×2 factorial design reported

similar null findings in a middle-aged cohort of HIV+ men.29

Despite the strengths of the latter two studies, one important limitation was the relatively

small group sizes (n < 20/group) – likely limiting the power to detect interaction effects of

interest. Moreover, these studies also utilized weekly injections, rather than daily

transdermal, administration of the drug. The route and timing of drug delivery may have

also been an important factor in this study’s findings. Studies which address these potential

limitations may be warranted. Furthermore, studies to evaluate the efficacy of combining

testosterone supplementation with other exercise modalities have yet to be conducted.

However, the evidence available to date does not suggest that a synergistic effect exists

between resistance exercise and testosterone supplementation. Given the potential risks of

testosterone supplementation – including increased risk of prostate cancer and

cardiovascular events – caution must be used before prescribing testosterone to older men.

2.2 Dehydroepiandrosterone (DHEA)

DHEA, a secretory product of the adrenal gland and a biologic precursor to testosterone, has

recently received a tremendous amount of interest as a potential intervention to improve

physical function among older adults. DHEA may have advantages over testosterone

supplementation in that fewer side effects have been reported and can be safely used by both

men and women. Like testosterone, DHEA declines to levels 10% to 20% of the young adult

peak by 70 years of age.35 Because of this decline, scientists have proposed DHEA

supplementation as another potential intervention for alleviating various ailments associated

with aging. Over the past two decades, research efforts have demonstrated modest beneficial

effects of DHEA on body composition, insulin resistance, inflammatory cytokine

production, as well as production of insulin-like growth factor one (IGF-1) and

testosterone.36–38 Several studies have also evaluated the relative efficacy of DHEA

supplementation for the improvement of skeletal muscle and overall physical function. For

instance, O’Donnell et al. reported a positive association between lower circulating DHEA

concentrations and performance on a chair stand task among men aged 55–85 years in the

Massachusetts Male Aging Study.39 Conversely, Nair et al. reported that long-term DHEA

supplementation had no “physiologically relevant beneficial effects on body composition,

physical performance, insulin sensitivity, or quality of life” among men and women aged ≥

60 years.27 A recent systematic review of the literature related to the effects DHEA on

physical function among persons aged ≥ 50 years indicated that the evidence regarding the

utility of DHEA alone was inconclusive as most studies showed no effect of DHEA

compared to control.40 However, only eight studies were included and the studies differed as

to whether DHEA was given in isolation or in combination with exercise. Notably, the

authors concluded that “studies showing benefit were more likely to include mandatory

exercise routines in addition to DHEA supplementation.”
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To this end, Kenny et al. reported that DHEA supplementation enhanced the efficacy of

low-intensity chair aerobics and a yoga program in improving lower-extremity strength and

physical function among frail older women.41 When combined with a twice-weekly exercise

program, 50 mg/d of DHEA significantly improved sitting leg press strength and

performance on the Short Physical Performance Battery (SPPB) – a validated test of

physical function for older adults.42 Previously, Villareal et al. reported that 6 months of

DHEA replacement therapy did not significantly improve strength or muscle mass among

older men and women. However, the addition of heavy resistance training resulted in

significant gains among the DHEA users compared to placebo.43 Conversely, Igwebuike et

al. reported no additional benefit of 12 weeks of combining DHEA supplementation with

exercise compared to exercise alone.44 Despite the conflicting evidence, the aforementioned

studies indicate that DHEA may hold promise as an adjuvant to exercise training for older

adults. Future studies are still needed to confirm the safety and utility of this approach.

2.3. Angiotensin-converting-enzyme (ACE) inhibitors

ACE inhibitors are a class of anti-hypertensive drugs that lower blood pressure by blocking

the conversion of angiotensin I to angiotensin II and inhibiting the degradation of

bradykinin, a potent vasodilatory substance. These drugs have received much attention in

recent years regarding their effects that are independent of blood pressure regulation, such as

increases in circulating IGF-1.45,46 In particular, interest has been high regarding the

potential utility of ACE inhibitors as therapeutic agents for preventing sarcopenia and

functional decline.47,48 Epidemiologic evidence from the Women’s Health and Aging Study

and the Systematic Assessment of Geriatric drug use via Epidemiology Study indicated that,

compared to non-users, seniors using ACE inhibitors displayed attenuated declines in

walking speed and fewer limitations in Activities of Daily Living (ADL).49,50 Other

epidemiologic evidence suggested that these outcomes may have been due to attenuated

declines in skeletal muscle mass and strength.49,51 Despite these promising findings, the

results of subsequent randomized controlled trials (RCTs) have been mixed regarding the

impact of ACE inhibitor use on functional decline.52–55 Thus, the benefits of ACE inhibitors

on functional outcomes may be limited when utilized as an isolated treatment.

Notably, Carter et al. previously reported that the combination of aerobic exercise and the

ACE inhibitor enalapril improved exercise tolerance among aged rats more than either

treatment alone.56 The enhancement of exercise tolerance by ACE inhibition appears to

stem at least partially from local skeletal muscle changes. Evidence among older rats

indicates that the addition of perindopril to treadmill running results in significant increases

in muscle capillary density and the proportion of type I fibers compared to either treatment

alone.57,58 These findings add to an extensive literature from genetic studies in humans

demonstrating an important interaction between the renin-angiotensin system and exercise

training.59–64

Recently, Buford et al. reported that older adults (age ≥ 70 years) who took ACE inhibitors

displayed significant improvements in physical function in response to a 12-month exercise

program compared to peers who did not take these medications.16 These findings indicated

that the combination of exercise and ACE inhibitor use resulted in dramatic improvements
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in walking speed – an important indicator of clinical outcomes in older adults.3–5 In

addition, ACE inhibitor users also demonstrated a significantly greater improvement in

performance on the SPPB. Notably, the inclusion of numerous covariates in the primary

analysis and sensitivity analyses suggested that these effects were not due to potential

confounding variables such as age, gender, and co-morbid conditions. However, residual

confounding remains a possibility creating the need for a RCT to evaluate the true effect of

combining ACE inhibitor use with exercise.

3. Nutritional modification

Nutritional modification or supplementation has also been widely evaluated as a potential

intervention for the prevention or treatment of age-related physical impairments. Though the

list of potential dietary- or nutraceutical-based interventions is extensive and many have

demonstrated limited efficacy, a few select interventions have shown at least some level of

promise. Below we review the potential utility of three such interventions – protein

supplementation, dietary restriction, and creatine supplementation – in enhancing the

efficacy of exercise for improving the physical function of older adults.

3.1 Protein Supplementation

Protein intake is important for maintaining and enhancing muscle mass, and has been

proposed as a potential valuable adjuvant to resistance training. Empirical findings illustrate

that resistance exercise alone represents an effective strategy for increasing skeletal muscle

mass and strength among older adults.65–67 In the absence of proper nutritional intake,

however, the beneficial effects of resistance exercise are often suboptimal. Acute bouts of

resistance exercise indeed stimulate muscle protein synthesis,68 but in the absence of post-

exercise feeding, myofibrillar synthesis is minimized due to concomitant increases in protein

degradation.69 Extensive evidence has demonstrated that ingestion of protein – particularly

from sources containing high doses of essential amino acids – is critical to maximizing the

accretion of myofibrillar protein among healthy older adults following resistance exercise.70

As such, this strategy would appear to be critical for maximizing increases in muscle mass

and strength following training.

The longer-term utility of protein supplementation, however, remains somewhat in question.

Age-related impairments in rates of muscle protein synthesis rates have been reported in a

variety of situations including the basal state,71 following acute ingestion of amino acids,72

following acute resistance exercise,73,74 and following short-term training.75 Given these

findings, it seems plausible that supplemental protein intake would help to alleviate

impairments in protein accretion by providing additional amino acids from which to

synthesize myofibrillar protein. However, aging has also been reported to impair muscle

protein anabolism following resistance exercise even when combined with significant amino

acid ingestion.76–78 Meanwhile, other evidence suggests that anabolic responses to post-

exercise protein intake may not completely blunted but rather just delayed.79,80 As a result

of these mixed findings, questions remain regarding whether protein supplementation can

truly maximize gains in muscle strength and physical function by older adults following

resistance training.
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Campbell and Leidy compiled data from 106 men and women aged 50–80 years and

concluded that resistance training-induced changes in muscle strength and size were not

enhanced by dietary protein intakes greater than the American Dietetic Association

recommendation of 0.8 g/kg/day.81 Similarly, a more recent study indicated that

supplementation with fortified milk did not enhance resistance training adaptations among

180 middle-aged and older (50–79 yr) men.82 Despite the strengths of these studies, timing

of protein ingestion or feeding was not taken into account, which may have reduced the

effect of the treatment on the adaptive responses to long-term resistance training. Esmarck et

al.83 reported that the timing of protein intake after resistance exercise influences the

potential for skeletal muscle hypertrophy following exercise training in older people. These

authors reported that older men (74±1 yr) who consumed a protein supplement (10 g protein,

100 kcal energy) immediately after resistance exercise experienced increases in whole body

fat-free mass, cross-sectional area of the quadriceps femoris, and mean fiber area of the

vastus lateralis following 12 weeks of training. Meanwhile, men who consumed the same

supplement two hours after exercising experienced blunted responses. However,

improvements in strength were similar between groups. This finding may reflect the fact that

gains in muscle strength experienced in the first weeks of training by previously sedentary

individuals are largely driven by neural influences.84 This finding agrees with those from

other relatively short-term studies indicating no supplemental benefit of post-exercise

protein ingestion on muscle strength among older adults with adequate dietary protein

intakes.85–90 As a result, longer-term studies are needed to determine if these increases in

lean mass translate to greater improvements in strength and overall physical function.

The optimal dose of post-exercise protein intake also remains a matter of debate. Recently,

Yang et al. reported that post-exercise rates of muscle protein synthesis were maximized in

young adults by consuming ~20 g of whey protein immediately after exercise.91 In contrast,

40 g of protein were needed to maximally stimulate myofibrillar protein synthesis among

older adults. These results are similar to another report which indicated a dose-dependent

response of muscle protein synthesis in middle-aged (59±2 yr) men following resistance

exercise and pre-exercise ingestion of beef protein.92 Notably, the latter report demonstrated

that higher doses of beef protein induced greater muscle oxidation of leucine. This finding is

in agreement with prior research indicating that increasing the proportion of leucine in the

post-exercise meal is necessary to enhance muscle protein synthesis among older adults.

Although at least one contrasting report exists,93 these findings in aggregate suggest that

higher doses of protein – with particular emphasis on leucine concentrations – stimulate

post-exercise muscle protein synthesis among older adults to a similar degree as that

observed for younger adults at lower doses of protein intake.

Despite the extensive prior work in this area, until recently few studies of older adults

evaluated the effects of combining resistance exercise with protein supplementation on

measures of physical function other than muscle strength (e.g. SPPB, walking speed, Timed

Up and Go test, etc.). To our knowledge, four recent trials (N = 60, 65, 80, 161) have

evaluated the impact of the combined intervention in seniors using a range of protein intakes

from 15–40 g/day for either three or six months duration.89,94–96 Although one study

indicated a significant increase in lean mass by adding protein supplementation (30 g) to

resistance training,96, all four studies indicated that supplemental protein did not enhance
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gains in physical function experienced by older adults in response to resistance training.

Thus, despite the significant interest in this area, at present it does not appear that

supplemental protein is likely to enhance functional performance among seniors who

already consume adequate protein in their diet.

3.2 Dietary Restriction

Because the force required to the move the body increases as one become heavier, excess

body mass is one of primary barriers to functional improvements among seniors. As such,

interventions designed to create caloric (energy) deficits to reduce body mass and potentially

improve function have received much attention in recent years. Previous studies suggest that

dietary restriction alone is effective in enhancing physical function in older adults with a

body mass index (BMI) in the obese range (≥ 30 kg/m2).98 Indeed, strong evidence indicates

that the reduction in mechanical load placed on joints and muscles following diet-induced

weight loss leads to functional improvements, with larger weight losses reducing maximum

knee compressive forces to a greater extent than smaller weight losses.99 Additional

evidence suggests that combining dietary restriction with aerobic exercise training appears

to produce even larger improvements in physical function compared to either intervention

alone.100

Despite prior work demonstrating the efficacy of dietary restriction among obese older

adults, the practice of such an approach by older adults remains somewhat controversial.

Specifically, serious concern exists that weight loss could accelerate sarcopenia and thereby

have adverse effects on physical function.101,102 A relatively large proportion of fat free

mass (25%) is typically lost following lifestyle interventions, which combine dietary

restriction and exercise training.103 However, recent clinical trials suggest that the addition

of resistance training to a diet plus aerobic exercise program can attenuate the loss of

skeletal muscle during weight loss by older adults.104 Diet plus supervised resistance and

aerobic exercise regimens have also been found to substantially improve walking speed and

other measures of physical function in obese, older adults.98,105

Less is known regarding the effects of dietary restriction on changes in physical function

among older adults whose BMI falls in the “healthy” or “overweight” ranges (20.0 – 29.9

kg/m2). Recent animal studies suggest that dietary restriction may produce health benefits

that include reduced body mass and whole-body fat mass, as well as improvements in

“biomarkers of aging” (i.e., fasting insulin level, core body temperature).106,107 However,

until further evidence becomes available from humans, the use of dietary restriction as an

adjunct intervention to enhance the effects of exercise training should be limited to obese

older adults due to concerns related to the potential loss of muscle mass as stated above.

3.3 Creatine Supplementation

Creatine monohydrate (CrM) has been studied extensively over the past 20 years as a

nutritional supplement and ergogenic aid for athletes.108109–111 Previously, a loading dose

of CrM was shown to significantly increase phosphocreatine (PCr) resynthesis following

intense muscle contractions.112 This improvement in PCr resynthesis rates is thought to

contribute to positive improvements in body composition, muscle strength, and exercise
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performance reported when combining creatine supplementation with exercise

training.109,113–115

Because of the potential to improve adaptations to exercise, Tarnopolsky was among the

first to postulate that CrM supplementation may be a beneficial therapy for older adults.121

Theoretically, an increase in intramuscular creatine (i.e., PCr and free creatine) and

corresponding increase in the rate of PCr resynthesis may enable older adults to train at a

higher relative intensity and subsequently enhance muscular adaptations. Previously,

Chrusch et al. reported that 12 weeks of CrM supplementation significantly increased

resistance-training derived increases in whole-body lean mass and lower-body muscle

strength among older (mean age: 70 yr) men.122 Soon after, Brose et al. reported that

combining resistance training and CrM supplementation for 14 weeks increased lean mass

and isometric leg extensor strength among 28 healthy men and women aged > 65 years.123

Though an exhaustive list of the potential cellular adaptions underlying this response is

beyond the scope of this discussion, these changes may be at least partially mediated by

increases in satellite cell number and total myonuclear number observed in response to

combining CrM supplementation with resistance training.124

Two more recent studies further support the possibility that CrM improves resistance

training adaptations among seniors,125,126 though interpretation of these studies’ findings is

more difficult because the CrM supplement included another nutrient (i.e. protein;

conjugated linoleic acid). Still, despite this challenge and the fact that at least one discrepant

report exists,90 the available evidence appears to support a potential additive or synergistic

effect of combining CrM supplementation with resistance training for improving lean mass

and muscle strength among older adults. Despite these promising findings, studies are

lacking which demonstrate significant improvements in clinical measures of physical

function. Accordingly, studies to investigate this potential benefit are warranted.

4. Mechanical Adjuvants

As discussed previously, skeletal muscle strength and endurance are critical factors in

maintaining health and independent living among seniors. To date, performance of high-

intensity resistance exercise has been demonstrated to be the most efficacious method of

maintaining skeletal muscle function. As such, the American College of Sports Medicine

recommends that individuals train at or above 65% of 1 repetition maximum (1RM) to

achieve muscle hypertrophy and strength gains.127 However, high-intensity resistance

exercise may be difficult for some groups of older adults, including those with

musculoskeletal or neurologic impairments. Furthermore, limited self-efficacy often

prevents these persons from engaging in high-intensity resistance exercise.18 Thus, a need

exists to develop alternative and/or adjuvant interventions which can maintain skeletal

muscle function while utilizing lower-intensity loads.

4.1 Electromyostimulation

Electromyostimulation (EMS) is an established technology that is widely used in sports

science. In practice, EMS may use either local or whole-body techniques, or with a

combination of the two. Briefly, local EMS delivers impulses that are transmitted through
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electrodes on the skin close to a defined group of muscles in order to stimulate muscle

contraction.128 Whole-body EMS (WBEMS), on the other hand, stimulates several muscle

groups simultaneously via an electrode belt system.129 Given the observed physiological

benefits of EMS technology in healthy, younger subjects, utilizing such technology in older

individuals may provide a safe and effective alternative to combating sarcopenia by

increasing or maintaining muscle mass and function.

Despite the potential utility of this modality, few studies to date have examined its efficacy

among older adults. Caggiano and colleagues130 reported a similar improvement in

isometric muscle torque production of the quadriceps femoris following 12 sessions of

voluntary isometric contraction or EMS in apparently healthy older males (72±4 years). In

women aged 62–75 years, Pillard et al.131 observed a comparable improvement in isometric

and isokinetic strength of the lower limbs and vertical jump height following four activity

sessions for six weeks of either EMS of the quadriceps, up-and-down stair climbing

exercises, or a combination of the two programs. Interestingly, there was greater benefit in

bone mineral density and dynamic muscle strength from the superimposed EMS group

compared with the other two programs alone. However, none of the three programs altered

body composition or posture. Recently, the effects of 6 weeks of EMS superimposed over

voluntary contraction training were examined on steadiness in muscle force production of

the knee extensors and flexors in persons aged 60–77 years.132 This training was effective in

increasing maximal voluntary muscle strength and in reducing force fluctuation in knee

extensor isometric contractions at low torque levels. Accordingly, EMS may contribute to an

improvement in force control. However, several limitations to the study – including

measurement of maximal voluntary contraction and steadiness at a single knee joint angle of

90°, and measurement of the steadiness under isometric contraction and not isokinetic –

limit one’s ability to make definitive conclusions about the efficacy of the program.

In contrast to local EMS, WBEMS focuses on the stimulation of large segments of muscle

during contractions.133 Previous studies have shown that WBEMS increases resting

metabolic rate134 and energy expenditure.133 Accordingly, WBEMS has been proposed as a

potentially beneficial modality for improving energy balance among overweight and obese

individuals.134 Two studies have also reported significant strength gains between 25–38% in

response to WBEMS.135,136 However, the majority of studies have reported relatively small

increases in maximum muscle strength (≤ 15%) following WBEMS. These changes are

rather small when compared to common changes that are observed as a result of standard

resistance training regimens. Furthermore, WBEMS has not demonstrated the ability to

induce meaningful changes in lean muscle mass,129 suggesting that neural adaptations are

likely to explain the mechanism for any increase in strength and/or power.

Despite widespread use of local or whole-body EMS in clinical and athletic populations; the

relative lack of well-controlled studies in seniors limits its present utility as a means to

maintain physical function and prevent disability. Furthermore, the available literature has

not clearly demonstrated any advantage of this method over traditional muscle strengthening

techniques. Still, there is at least some evidence to suggest older individuals with

physiological limitations or who are unwilling/unable to perform vigorous resistance

training programs may benefit from EMS. In summary, continued investigation of this area
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is needed to better understand its potential utility as a clinical modality for maintaining

physical function among older adults.

4.2 Blood flow restriction exercise (KAATSU)

As reviewed recently, exercise performed while blood flow is mildly restricted holds

potential as an alternative to high-intensity resistance training.137 Blood flow-restricted

exercise, also known as KAATSU, involves performing low-intensity resistance exercise

while externally-applied compression mildly restricts blood flow to the active skeletal

muscle. Because KAATSU training eases joint stress by avoiding high-intensity loads, it has

been proposed as a potentially efficacious method of improving muscle strength among

persons for which high-intensity resistance training is medically contraindicated or

infeasible.137–139

The concept of exercising while restricting blood flow has been around for nearly 40-years,

and was popularized in Japan in the mid-1980’s. Literally translated, KAATSU means

“muscle strength testing with the addition of pressure.” This paradigm utilizes a relatively

simple approach that generally involves inflating a narrow compression cuff (11–15 cm

wide) around an appendicular limb proximal to the muscle group being trained. The

compressive pressure varies between studies, but typically the cuff is inflated to a pressure

greater than brachial systolic pressure. Notably, the compressive pressure experienced at the

artery is less than the tourniquet pressure due to soft tissue compliance.140 As such, cuff

pressure occludes venous return and causes arterial blood flow to become turbulent and

thereby reducing blood velocity distal to the cuff.

Mounting evidence demonstrates that KAATSU training serves as a potent stimulus for

increasing skeletal muscle mass and strength141–143 – as well as muscular endurance.144,145

This observation that exercise performed with low mechanical loads seemingly opposes

traditional beliefs regarding processes of muscle adaptation and as such has been met with

some interest by researchers.146 To this end, several recent studies have attempted to

identify the molecular mechanisms regulating KAATSU-induced increases in muscle

function. These studies have demonstrated that KAATSU stimulates a number of beneficial

adaptations – including regulating mechanisms that govern myofibrillar protein

balance,147–149 vascular supply,143,144,150,151 and neuromuscular function.149,152 As a

result, this paradigm has been proposed as a potential therapeutic strategy to prevent

sarcopenia and age-related functional decline.139 However, although the available evidence

has demonstrated the beneficial effects of chronic KAATSU training in young143,150,153 and

upper middle-aged90 adults, to our knowledge no study has evaluated the relative efficacy of

chronic KAATSU as a therapeutic strategy for preventing functional decline among older

adults. Moreover, although recently published data indicate that older adults can safely

perform acute bouts of KAATSU exercise,154 questions remain regarding the safety of long-

term KAATSU training for seniors as well as their willingness to adhere to the intervention.

Accordingly, studies are needed to evaluate the feasibility of long-term KAATSU

interventions for older adults.
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5. Alternative Training Paradigms

Exercise guidelines for older adults generally recommend traditional forms of resistance and

aerobic training.155,156 However, some alternative forms of physical training may be more

effective at addressing the specific age-related physical impairments that lead to functional

decline. Indeed, skeletal muscle adaptations to resistance training are highly dependent on

several programming variables such as load, volume, speed of contraction, and movement

specificity. Though this point is widely recognized in fields which utilize exercise training to

promote athletic performance, it seems to be less emphasized in the literature related to the

prevention of disability among the elderly. Here we discuss several training regimens which

capitalize on the understanding and manipulation of these programming variables and their

potential application to improving function among older adults.

5.1 High-velocity (power) and eccentrically-biased training

Interventions manipulating either the speed or direction of muscle contraction during

resistance exercise are among the most studied paradigms to optimize the efficacy of

exercise for older adults. Two of the most commonly studied interventions of this type are

(1) high-velocity resistance training, otherwise known as power training and (2)

eccentrically-biased resistance training. Power training utilizes high speed muscle

contractions, generally during the concentric phase of movement. The rationale for power

training is that muscle power (the product of force and movement velocity) declines earlier

and more rapidly in older adults than muscle strength.157–159 Moreover, several studies have

indicated that maximal muscle power is more closely associated with physical function than

maximal strength.160–163 A number of randomized trials have been conducted to compare

power training to conventional resistance training. The cumulative results of these studies

suggest that power training is more effective than conventional resistance training for

enhancing muscle power164–166 and has been shown to improve both muscle size167 and

maximum contraction velocity.168 While power training has been shown to be effective for

enhancing physical function, it remains unclear whether this effect does11,165 or does

not164,169 exceed that of conventional resistance training.

Resistance training which highlights the use of eccentric, or lengthening, contractions has

also received significant interest from scientists. Eccentric training is conducted using

specialized equipment such as an isokinetic dynamometer170,171 or by performing the

concentric phase of movement bilaterally and the eccentric phase unilaterally.172 Previous

research has demonstrated that older adults’ muscle strength is preserved to a greater extent

during eccentric muscle contractions compared to concentric muscle contractions.173,174

Therefore, eccentric contractions may allow the individual to train with greater relative

intensity, which is crucial for eliciting beneficial muscular adaptation.175 It has also been

proposed that eccentric contractions require a different neural activation strategy compared

to concentric contractions. For instance, cortical activation measured with

electroencephalography during eccentric contractions shows earlier onset, higher magnitude

and larger area of activation than during concentric contractions.176,177 Training with

eccentric contractions has also been reported to induce a larger cross-transfer of strength

improvements to the untrained limb,178,179 indicating greater involvement of bilateral motor
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control mechanisms. Accordingly, eccentric contraction may be a more potent stimulus for

eliciting beneficial neural adaptation. The potential advantages of eccentric resistance

training might be particularly important when initiating a resistance training intervention in

older adults with poor muscle strength.180

Consistent with the advantages suggested above, reported benefits of eccentric training

include improvements in strength171,178,181,182, muscle size,181–184 neuromuscular

activation,171 and cross-transfer of strength improvements.171,178,179 Cumulatively, there is

considerable evidence that muscular and neural adaptation with eccentric training may

exceed that of concentric training in healthy adults. However, it is important to note that

studies do exist which have reported little to no additional benefit of eccentric resistance

training over conventional training.170,172 Furthermore, the benefits of eccentric training are

often very specific to the trained contraction velocity and mode. Accordingly, additional

research is needed to optimize the use of eccentric resistance training for older adults,

particularly in the context of promoting transfer of improvements to physical function.

5.2 Task-Specific Exercise

A wealth of previous research indicates that traditional exercise modalities enhance

numerous aspects of physical performance. However, the extent to which these benefits

transfer to improving the ability to perform ADLs has been questioned.164,185 Issues

surrounding the transfer of specific exercise adaptations to the performance of ADLs may

stem at least partially from a lack of training specificity during these interventions. The well-

established principle of training specificity dictates that the largest improvements in task

performance stem from training paradigms that closely simulate the task.186 Accordingly,

task-specific exercise (TSE) training, also known as functional exercise training, was

designed to address the task specificity limitation of traditional exercise programs and

improve the performance of ADLs related to physical disability. These programs involve

practicing functional tasks, such as chair rises, stair climbing, and walking under different

challenging conditions.187–189 As such, TSE training offers older adults the opportunity to

improve basic components of physical function (e.g., muscle strength and balance) within an

ecologically valid context that may also enhance relevant cognitive and perceptual factors.

Limited evidence suggests TSE training may also produce neural plastic changes that could

underlie functional improvements.190

Previously, de Vreede at al.191 demonstrated that both TSE and resistance training

significantly improved ADL performance among community-dwelling older women.

Though not statistically significant, the TSE group scored better on the Assessment of Daily

Activities Performance scale, with a mean change of 7.5 units, compared to the resistance

training group’s mean change score of 2.8 units. Both programs also led to gains in knee

extensor strength. In a separate study, these authors reported that neither 12 weeks of TSE

nor resistance training led to changes in self-reported health related quality of life.192

Recently, Manini et al. reported that TSE significantly reduced performance time of ADLs,

but did not lead to muscle adaptations, whereas resistance training increased muscle

strength, but had no impact on ADL performance time.
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Other studies have combined TSE with resistance training by requiring participants to wear

a weighted vest or carry progressively heavier loads while performing standard resistance

exercises.188,193–195 Notably, while the exercises in these interventions specifically trained

muscles used in mobility tasks, these exercises did not simulate ADLs as closely as standard

TSE interventions. Still, in a small sample of older women with mobility impairments, this

type of TSE plus resistance training enhanced leg power and improved chair stand time,

compared to a slow-velocity, low-resistance exercise program.193 Both TSE and low

resistance training interventions significantly improved SPPB scores. However, studies with

larger sample sizes have indicated that the benefits derived from these TSE programs were

not meaningfully different than those produced by a National Institute on Aging (NIA)

recommended exercise program188 or traditional resistance training intervention.196 Similar

combination TSE interventions have also been applied in long-term residential care settings,

though with little success.194,195

Taken together, the available evidence tentatively supports the notion of using TSE to

improve physical function and ADL performance. However, numerous methodological

limitations within the extant literature preclude drawing firm conclusions regarding the

efficacy of TSE. Future research using larger, more diverse samples is required to

systematically assess TSE interventions, particularly those comprised of exercises that

closely simulate ADLs. Additionally, a well-designed RCT is needed to determine whether

TSE can provide older adults with additional functional benefits than currently

recommended exercise programs.

5.3 Dual-task training

In addition to physical factors, cognition plays an important role in the performance of

functional tasks.197,198 Optimal task performance requires the capability to attend to and

process information about task objectives and external conditions. For example, walking in a

crowded environment or walking while maintaining a conversation may place a high

demand on information processing resources. This can be a challenge for many seniors as

available cognitive resources typically decline with age.199,200 As a result, “dual-tasking”

paradigms have been used in research to assess an individual’s capability to process multiple

sources of motor and/or cognitive information simultaneously. Dual-tasking has also been

used in exercise interventions to target the mechanisms of impaired information-processing

and induce gains in functional task performance.

Recently, several randomized controlled trials have indicated a beneficial effect of dual-task

training on physical function in older adults. For instance, Shigematsu et al. 201 randomized

68 older adults to a 12-week “square-stepping” training protocol or a standard walking

protocol. Square stepping required participants to walk over a course that was divided into a

grid of squares and move across the grid using increasingly complex patterns of foot

placement during stepping. Following the interventions, the group trained with square

stepping exhibited larger gains in leg power, balance, agility and reaction time compared to

the walking group. Another study of 23 older adults with balance impairments compared

balance and gait performance following 4 weeks of either single or dual-task training.202

These findings indicated that both training regimens improved walking speed, but only dual-
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tasking improved walking speed when the test was accompanied by a simultaneous

cognitive challenge. Moreover, Pichierri et al. 203 recently compared the utility of a standard

strength and balance intervention to cognitive-motor training using a dance video game. In a

sample of 30 older adults, the group that trained with the dance video game demonstrated

better performance on an assessment of fast dual-task walking, but the groups did not differ

on tasks of foot placement accuracy or falls efficacy.

Cumulatively, there is enticing evidence to suggest a benefit of dual-task training compared

to standard training regimens. However, the wide variety of tasks used for training and

assessment – as well as the small sample sizes utilized in the available studies – make it very

difficult to estimate the magnitude and generalizability of the effect. Future research should

be directed toward defining the parameters of dual-task training that are most crucial for

inducing gains in function. Such studies should also provide further evidence regarding the

level(s) of cognitive reserve necessary to benefit from such interventions.

6. Environmental Modification

Environmental limitations often represent a significant barrier to regular engagement in

exercise by older adults. For example, older adults who live in rural or low income areas

may have difficulty accessing recreational facilities or other locations in which they can be

physically active. Additionally, many neighborhoods may not have adequate sidewalks, bike

paths, or other open areas that would encourage physical activity. Although studies

examining the effects of the environment on physical activity in older adults are limited,

available evidence suggests that making the surrounding environment more conducive to

physical activity would increase activity levels in all segments of the population.204–206

Greater distance to recreational facilities may represent a barrier to exercise specifically for

older adults due to potential financial and safety concerns related to driving long distances.

Difficulties in performing regular ADLs may also be a barrier for seniors to regularly

engage in formal training regimens.207 Given the potential benefits of exercise training

regimens for enhancing physical function in older adults, a key question is how to improve

adherence to exercise regimens in this population. Various strategies that have been

examined to enhance exercise adherence, primarily in young and middle-age adults, include

home-based exercise, the provision of home exercise equipment, the use of short bouts of

exercise, and monetary incentives for exercise.208 Of these strategies, home-based exercise

regimens have received the most consistent support for enhancing long-term exercise

adherence.209 In contrast to supervised group exercise sessions, home-based exercise offers

a greater degree of flexibility and fewer obstacles. The benefits of home exercise may also

be enhanced by providing participants with exercise equipment and by allowing them to

exercise in brief bouts. For example, Jakicic et al.210 reported that participants who received

home exercise equipment had significantly higher levels of long-term exercise adherence

than participants without exercise equipment. Additional research is now needed to further

examine the types of home-based training programs that can produce high levels of

adherence and functional benefits among older adults.
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Conclusion

In recent years, numerous studies have indicated a wide variety of benefits of exercise to the

physical health of older adults. Indeed, exercise is increasingly being considered the

standard of care for preventing disablement among seniors. Still, accumulating evidence

indicates that a “one-size fits all” approach isinsufficient to fully meet the needs of the

heterogeneous older adult population. Accordingly, like other aspects of medicine, exercise

regimens should be individually tailored to ensure the highest level of benefit for all

individuals.211,212 The present review summarizes a variety of approaches which have been

studied in attempting to optimize the beneficial effects of exercise on the physical function

of older adults (Figure 2). Several of these interventions appear to hold promise for

enhancing the benefits of exercise for at least some older adults. However, insufficient

evidence regarding the efficacy of many of these interventions precludes drawing firm

conclusions and making clinical practice recommendations. As such, future research in this

area is needed using well-controlled, larger-scale studies which can make an impact on

clinical practice. Such research is critical to the development of clinical practice

recommendations which will have a lasting impact in maintaining the health and

independence of the rapidly increasing number of older adults.
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Figure 1.
Simplified schematic of the development of physical disability among older adults and the

potential of exercise to slow or prevent this development. The use of a dashed line highlights

the variability of responsiveness and that standard exercise programs may be insufficient to

prevent disability among several sub-groups of seniors.
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Figure 2.
Summary diagram depicting potential methods to optimize functional responses of older

adults to exercise. Specific examples of potential interventions are discussed within the text.
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