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ABSTRACT
Background: Currently, early weight-loss predictions of long-term
weight-loss success rely on fixed percent-weight-loss thresholds.
Objective: The objective was to develop thresholds during the first
3 mo of intervention that include the influence of age, sex, baseline
weight, percent weight loss, and deviations from expected weight to
predict whether a participant is likely to lose 5% or more body
weight by year 1.
Design: Data consisting of month 1, 2, 3, and 12 treatment weights
were obtained from the 2-y Preventing Obesity Using Novel Dietary
Strategies (POUNDS Lost) intervention. Logistic regression models
that included covariates of age, height, sex, baseline weight, target
energy intake, percent weight loss, and deviation of actual weight from
expected were developed for months 1, 2, and 3 that predicted the
probability of losing ,5% of body weight in 1 y. Receiver operating
characteristic (ROC) curves, area under the curve (AUC), and thresh-
olds were calculated for each model. The AUC statistic quantified the
ROC curve’s capacity to classify participants likely to lose ,5% of
their body weight at the end of 1 y. The models yielding the highest
AUC were retained as optimal. For comparison with current practice,
ROC curves relying solely on percent weight loss were also calculated.
Results: Optimal models for months 1, 2, and 3 yielded ROC curves
with AUCs of 0.68 (95% CI: 0.63, 0.74), 0.75 (95% CI: 0.71, 0.81), and
0.79 (95% CI: 0.74, 0.84), respectively. Percent weight loss alone was not
better at identifying true positives than random chance (AUC #0.50).
Conclusions: The newly derived models provide a personalized
prediction of long-term success from early weight-loss variables.
The predictions improve on existing fixed percent-weight-loss
thresholds. Future research is needed to explore model application
for informing treatment approaches during early intervention. The
POUNDS Lost study was registered at clinicaltrials.gov as
NCT00072995. Am J Clin Nutr 2015;101:449–54.
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INTRODUCTION

The goal of any weight-loss intervention is to produce long-
term weight loss and weight-loss maintenance (1–7). Although
monitoring patient progress early in the intervention is theoret-
ically feasible, continual and frequent monitoring can be time-

consuming and burdensome for both subjects and clinicians. In
addition, a percentage of patients may respond less effectively to
selected intervention strategies. Connecting the relation between
long-term weight-loss outcomes with short-term intervention
quantitatively offers health care providers and patients an op-
portunity to evaluate intervention strategy early and seek alter-
nate treatment in the case of less effective patient response.

Lifestyle modifications that promote weight loss are often
readily applied as a preferred treatment of overweight and obese
patients, and an existing body of research has examined short-
term predictors of long-term weight-loss success. Analysis of
data in the Preventing Obesity Using Novel Dietary Strategies
(POUNDS Lost) study (8) revealed that early behavioral ad-
herence (attendance to group sessions, self-monitoring through
frequent weighing) was a significant predictor of short-term (,6
mo) and long-term (24 mo) weight loss. In addition, the mag-
nitude of weight lost early in the intervention was a predictor of
long-term weight loss. Similar results were found in the Action
for Health in Diabetes (Look AHEAD) study (9–12) and within
participants of the Diabetes Prevention Program (7).

Here we examined whether short-term predictions of long-
term weight-loss success can be improved beyond fixed thresh-
olds of percent weight loss (11) by including known variables
that influence weight loss (8) along with quantifications of
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expected weight loss obtained from a validated dynamic model
predicting weight change (13). We defined successful long-term
weight loss as individuals who lost$5% of their body weight by
the end of year 1 (14).

METHODS

Subjects

Details involving the experimental design of the POUNDS
Lost study are described elsewhere (15). POUNDS Lost par-
ticipants (n = 811) were randomly assigned to one of 4 dietary
weight-loss interventions (an average of 750 kcal/d below
baseline requirements) varying in macronutrient composition.
The first diet composition consisted of 20% fat and 15% protein,
the second 40% fat and 15% protein, the third 20% fat and 25%
protein, and the fourth 40% fat and 25% protein. The study was
carried out at 2 sites: the Harvard School of Public Health and
Brigham and Women’s Hospital, Boston, Massachusetts, and the
Pennington Biomedical Research Center in Baton Rouge, Lou-
isiana. During the first 26 wk of the study, hour-long group
sessions were held 3 out of every 4 wk. Participants were
strongly encouraged to attend all group meetings; however, if
a participant missed a session, he or she was instructed to
schedule an individualized visit with his or her assigned coun-
selor. Participants were provided with nutrition education and
were taught behavioral strategies to optimize their adherence to
dietary targets. In addition to group meetings, participants met
individually with their assigned counselor every 8 wk. In-
dividual sessions were applied to review the participant’s ad-
herence to the dietary intervention, find solutions to any
challenges encountered between visits, and develop a plan to
maximize the participant’s future adherence. Behavior modifi-
cation strategies were integrated into the group and individual
sessions with the aim of promoting adherence to the prescribed
macronutrient diet. For all 4 treatment arms, 90 min of physical
activity per week was prescribed.

The aim of this current study was to develop a quantitative
diagnostic that demarcates participants likely to achieve weight
loss of 5% or more at the end of the first intervention year based
on early weight change.Weight loss of at least 5% of body weight
has been established as the minimal lower weight loss bound to
obtain clinically meaningful health benefits and is the guideline
currently used by the Food and Drug Administration to define
successful weight loss (16).

To accomplish these aims, we analyzed subject data where body
weights were available at baseline and months 1, 2, 3, and 12.
Monthly body weights were represented by weights obtained from
either measurement visits or intervention visits recorded in the last
2 wk of the month. Because the number of subjects greatly de-
creased if we also imposed existence of a simultaneous weight at
the end of year 2, we focused on the relation to year 1 data.

Mathematical model that predicts weight change

Monthly predicted weights for the POUNDS Lost subjects
were obtained from a validated dynamic mathematical model that
predicts weight change in response to changes in energy intake
and expenditure (13, 17, 18) programmed for multiple subjects in
the Visual Basic Application within Microsoft Excel.

The dynamic model has been tested and validated on in-
dividual subjects undergoing restrictions in energy intake and
moderate increases in physical activity in several previously
reported studies (13, 17–20).

The distance from predicted weight at the end of each month
was defined to be the difference between actual weight and
predicted weight. If the actual weight was higher than predicted,
then this value would be positive, and if the actual weight was
lower than predicted, then this value would be negative.

Statistical methods

Logistic regression model

Logistic regression models for months 1, 2, and 3 were de-
veloped that included covariates of age, sex, baseline weight, and
target energy intake. Data involving weight-loss patterns from
each month were used for the month-specific models predicting
$5% weight loss at year 1. These additional variables were
distance between actual weight loss and predicted weight loss
and the percent weight lost. For example, in month 2, the dis-
tance between actual and predicted weight loss and percent
weight loss in both months 1 and 2 were included for analysis.
The logistic model-estimated coefficients were used to calculate
success probabilities for each individual by using the probability
distribution function, 1 O (1 + e–b), where b is a linear function
of study variables, which was then applied as a continuous input
variable to derive the receiver operating characteristic (ROC)
curve.

Optimal models (at each month) were classified as those that
yielded the highest AUC in the ROC analysis. All analyses were
performed with the statistical software package SPSS version 22
(SPSS Inc.).

ROC curves

An ROC analysis (21) was performed to determine which
included variables yield the best predictive model of successful
year 1 weight loss. Successful year 1 weight loss was defined as
weight loss$5% (14). ROC curves were developed by using the
probability function determined by the logistic regression
models. The AUC was calculated for each ROC curve, and the 3
logistic models (one that applied covariates obtained from
month 1, one that applied available covariates from months 1
and 2, and one that applied available covariates from months 1,
2, and 3) were retained that yielded the highest AUC values. All
analyses were performed with SPSS version 22 (SPSS Inc.).

Comparison of models to percent weight loss as a predictor of
long-term weight-loss success

Although the AUC provides a score for model capacity to
predict long-term weight-loss success, the primary goal was to
determine whether the models improve on current practice.
Current practice relies on evaluating percent weight loss early
during intervention to predict long-term weight-loss outcomes.
To compare the newly derived models with the predictor of
percent weight loss, we derived ROC curves relying solely on
percent weight loss and compared the subsequent AUC with the
AUC obtained by the developed models. All analyses were
performed with SPSS version 22 (SPSS Inc.).
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Leave-one-out cross-validation

A leave-one-out cross-validation was performed for the optimal
models in the statistical software package R (R Core Development
Team). For each individual in our data set, the predicted probability
was computed by using the estimated logistic regression parameters
obtained by omitting that sample data. The resulting ROC curve
generated from the predicted probabilities and AUC were calcu-
lated and compared with the AUC of the original ROC curve.

Determination of thresholds to identify participants likely to
achieve $5% body weight loss at the end of year 1

To determine thresholds, we calculated the minimal distance
from the point (0,1) on the Cartesian plane to the ROC curve (22,
23), which results in the threshold that best simultaneously
maximizes sensitivity and specificity. The minimal distance was
analytically calculated by finding the real valued root of the
derivative of the distance function between the point (0,1) and the
ROC curve. The x-coordinate of the critical point, which rep-
resents the 1 2 sensitivity value, was retained, and the value of
the probability function associated with the critical point was
recorded as the threshold. Probability values below the threshold
are associated with participants likely to achieve successful
long-term weight loss. All calculations were performed in the
computer algebra system, Maple 12 (Maplesoft, 2013).

RESULTS

Subjects

Table 1 contains the subject characteristics from the partici-
pants in the POUNDS Lost study with adequate demographic data
and information required to derive percent-weight-loss changes
during study duration as described in Williamson et al. (24), along
with the reference database used for this analysis. Because our
analysis required simultaneous weights at months 1, 2, 3, and 12,
the total number of subjects was reduced from 683 subjects who
completed the study by year 1 to 354, but the dietary intervention
types remained fairly equal across the reference database.

Logistic regression models and ROC analysis

Table 2 contains the logistic regression models associated
with the ROC curves (Figure 1) that yielded the highest ROC
along with the corresponding AUC and 95% CIs. The AUC
statistic varies between 0 and 1, with the value of 1 representing
perfect accuracy in identifying true positives (21). An AUC
above 0.50 indicates predictions are better than random chance,
with higher AUC values reflecting a more accurate classification
of individuals who did and did not lose $5% of their body
weight by the end of year 1.

For month 1, the optimal model included the variables age,
baseline weight, sex, target intake, distance between actual and
predicted weight at the end of month 1, and percent weight loss at
the end of month 1. The resulting AUC was 0.69 (95% CI: 0.63,
0.74). The optimal month 2 model included the following var-
iables: age, baseline weight, sex, target intake, distance between
actual and predicted weight at the end of months 1 and 2, and
percent weight loss at the end of months 1 and 2. The AUC was
0.75 (95% CI: 0.71, 0.81). The optimal model for month 3 in-
cluded variables age, baseline weight, sex, target intake, distance
between actual and predicted weight at the end of month 3, and
percent weight loss at the end of month 3. The AUC was 0.79
(95% CI: 0.74, 0.84).

Leave-one-out cross-validation

The ROC curves obtained from the leave-one-out cross-
validation had a comparable AUC to the original ROC curve
(Figure 1). The AUCs for the leave-one-out cross-validation ROC
curve for months 1, 2, and 3 were 0.66 (95% CI: 0.60, 0.71), 0.73
(95% CI: 0.68, 0.78), and 0.77 (95% CI: 0.72, 0.82), respectively.

Comparison of models to percent weight loss as a predictor
of long-term weight-loss success

The AUC from the ROC curves derived by using percent
weight loss in months 1, 2, and 3 as a predictor of the binary
outcome of $5% weight loss at year 1 was consistently below
0.50 (Table 2 and Figure 1, dashed curves).

Determination of thresholds from ROC curves

The calculated thresholds for months 1, 2, and 3 were 0.58,
0.57, and 0.54, respectively (Table 2).

Identification of participants likely to achieve successful
long-term weight loss

Traditional applications of thresholds derived from ROC
curves rely on a single continuous predictor variable. Cut
scores are then directly calculated for the predictor variable. In
this analysis, however, we applied several variables through
a logistic regression model to obtain estimated success
probabilities. Therefore, identifying participants who are
likely to achieve successful long-term weight loss in a specific
month requires a 2-step process. First, the individual’s age,
sex, baseline weight, target energy intake, distance from
predicted weight, and percent weight-loss information were
entered into the appropriate month-specific logistic regression
model (Table 2). The model outcome value, b, was then input
into the probability function 1 O (1 + e–b), which provides an

TABLE 1

Summary and baseline characteristics of the original POUNDS Lost study

and the reference database used to develop the diagnostic test1

POUNDS Lost study: diet group

Entire study Reference data

Women enrolled in each diet group, % n = 427 n = 135

40% fat and 25% protein 27 25

20% fat and 15% protein 23 26

20% fat and 25% protein 21 27

40% fat and 15% protein 28 22

Men enrolled in each diet group, % n = 256 n = 219

40% fat and 25% protein 24 25

20% fat and 15% protein 29 24

20% fat and 25% protein 25 24

40% fat and 15% protein 22 27

Total N 683 354

Age, y 51 6 9 52 6 9

Weight, kg 93 6 15 93 6 16

BMI, kg/m2 33 6 4 33 6 4

1POUNDS Lost, Preventing Obesity Using Novel Dietary Strategies.
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estimated success probability between 0 and 1. If this esti-
mated probability value is above the proposed the threshold,
then the individual is identified as likely to lose $5% of his or
her body weight by the end of year 1.

To illustrate the algorithm, we provide an example for the
second month of weight loss for a man aged 55 y, with a baseline
weight of 122.78 kg and a target energy intake of 1200 kcal/d.
At the end of month 1, the participant’s actual weight was
127.46 kg and his predicted weight was 114.51 kg, yielding the
distance from predicted as 12.95 kg. At the end of month 2, the
participant’s actual weight was 122.56 kg and his predicted
weight was 107.24 kg, resulting in the month 2 distance from
predicted as 15.32 kg. Percent weight loss was 3.82% in month

1 and 20.18% in month 2. Substituting these values into the
month 2 regression formula results in the following:

b ¼2 0:7366 2 0:0064 3 122:78 2 0:5510 3 1

þ 0:0368 3 55 2 0:0004 3 1200 þ 0:6100

3 12:95 2 0:3713 3 15:32 2 0:4911 3 ð3:82Þ
2 0:0617 3 ð2 0:18Þ ¼ 2 0:08 ð1Þ

Inputting this value into the probability function yields

Probability ¼ 1O
�
11 e2b

� ¼ 0:48, 0:57 ð2Þ

TABLE 2

Optimal model that yielded the highest AUC for each month followed by the AUC obtained from using solely percent weight loss to develop the ROC curve1

Continuous variables used to

develop ROC curve Logistic regression model2
Probability cutoff

values AUC (95% CI)

Month 1 probability model 20.1655 2 0.0007 3 baseline weight 2 0.4037 3 sex +

0.0455 3 age 2 0.0006 3 target intake 2 0.1594 3
distance from predicted month 1 2 0.1466 3 percent

weight loss month 1

0.58 0.69 (0.63, 0.74)

Month 1 % weight loss — — 0.35 (0.30, 0.41)

Month 2 probability model 20.7366 2 0.0064 3 baseline weight 2 0.5510 3 sex +

0.0368 3 age 2 0.0004 3 target intake + 0.6100 3
distance from predicted month 1 2 0.3713 3 distance

from predicted month 2 2 0.4911 3 percent weight loss

month 1 2 0.0617 3 percent weight loss month 2

0.57 0.76 (0.71, 0.81)

Month 2 % weight loss — — 0.26 (0.21, 0.31)

Month 3 probability model 21.349 2 0.0016 3 baseline weight 2 0.5403 3 sex +

0.0334 3 age 2 0.0004 3 target intake 2 0.0156 3
distance from predicted month 3 2 0.2627 3 percent

weight loss month 3

0.54 0.79 (0.74, 0.84)

Month 3 % weight loss — — 0.22 (0.17, 0.27)

1ROC, receiver operating characteristic.
2Baseline weight (kg); sex = 0 for females, 1 for males; age (y); target intake (kcal/d); and distance from predicted (kg).

FIGURE 1 The ROC curves in month 1 (A), month 2 (B), and month 3 (C) based on prediction of a binary outcome of 5% weight loss in 1 y. The solid
dark curves use a probability function derived from a logistic regression model that includes covariates of age, baseline weight, height, sex, target intake,
distance between actual and expected weight, and percent weight loss available by each month. The long-dashed medium dark curves represent the ROC
curves derived from the leave-out-one cross-validation. The dashed curves are based solely on percent weight loss. All dashed curves have an AUC below
0.50. The AUC for the probability function–derived curves in months 1, 2, and 3 were 0.68, 0.75, and 0.79, respectively. The AUCs for the leave-one-out
cross-validation ROC curves were 0.66, 0.73, and 0.77 respectively. ROC, receiver operating characteristic.
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Because the probability value is less than the threshold for month
2 (0.57), the participant is classified as unlikely to lose $5% of
his body weight at the end of year 1.

DISCUSSION

Here we used variables of age, sex, baseline body weight,
target energy intake, months 1–3 percent weight loss, and
months 1–3 deviations from predicted weight loss to classify
individuals likely to achieve 5% or more body weight loss at the
end of 1 y. The diagnostic determines optimal thresholds from
ROC curves derived from models that include the considered
variables. The AUCs of the optimal ROC curves were 0.69 using
weight-loss data available from month 1, 0.76 using weight-loss
data available in month 2, and 0.79 using weight-loss data
available in month 3. These results improve on predictions re-
lying on thresholds of percent weight loss. When percent weight
loss during the first 3 mo was used as the sole predictor of
successful weight loss at year 1 ($5% body weight), the AUC of
the corresponding ROC curves was below 0.50, which indicates
predictions that are not better than random chance.

The developed models provide a personalized threshold in
each of the first 3 mo that identify individuals likely to lose.5%
of their body weight by the end of year 1. Our work extends on
a large body of research that has established early behavioral
adherence and magnitude of weight lost to long-term weight-
loss outcomes (7–11). Inclusion of the covariates of age, sex,
baseline weight, target energy intake, and distance from pre-
dicted weight in addition to percent weight loss raised the
probability of correctly classifying participants who are likely to
achieve $5% loss of body weight at the end of 1 y from 0.22 to
0.79 in month 3.

This study is not without limitations. The POUNDS Lost study
focused primarily on restricting energy intake to reduce weight
within the context of 4 diets with differing macronutrient profiles.
Although the original study outcomes found that the different
diets resulted in clinically meaningful weight loss independent of
macronutrient composition (15), the reduced size of each diet arm
in our current analysis may obscure a potential macronutrient
effect on the predictions.

In addition, because the dynamic model has been validated and
successfully applied for lifestyle interventions that include
moderate levels of physical activity in combination with re-
stricted energy intake (17, 25), the results presented here are
robust and can be applied to interventions that fall in this cat-
egory. However, the results do not transfer toweight loss achieved
from high doses of intense exercise, in which body weight and
body composition responses vastly differ from traditional life-
style interventions that couple restrictions on energy intake with
moderate physical activity.

The analysis presented here relied on a binary outcome of
$5% weight loss at year 1. Five percent weight loss is the
magnitude currently employed as the minimum weight loss
connected to improved health (10, 14). Although methods em-
ployed can be applied to other binary outcomes (e.g., 10%
weight loss at year 1), the results would likely be altered. For
example, the AUC may be higher or lower with a different year
1 outcome. Similarly, weight loss could be achieved by using
alternate treatments such as pharmacotherapy or surgery, which
would alter the expected weight-loss trajectory defined by the

dynamic model. Finally, because the POUNDS Lost study re-
cruited participants from only Boston and Baton Rouge, the
model results should be applied with caution when extending to
the entire US population. However, the analysis we performed is
robust, and based on the desired definition of successful long-
term weight loss, treatment and type of treatment, the ROC
analysis, thresholds, and AUC can be readily computed for al-
ternate definitions of successful long-term weight loss and with
broader population demographics.

An important limitation of our analyses is that the thresholds
cannot be easily translated to an obvious and readily accessible
clinical measurement similar to percent weight loss. For example,
the Food and Drug Administration has adopted 5%weight loss by
12 wk as an early predictor of long-term weight-loss success (16).
On the other hand, more complex models, including the ones
developed here, and algorithms can be programmed and made
accessible for clinical application through web-based software
applications. A second limitation is that absence of a measured
body weight at months 1, 2, or 3 would prohibit a long-term
success prediction by using data from that particular month.
However, we point out that missing early weigh-ins is associated
with lower adherence and modest or no long-term weight loss
(8, 24).

Finally, providing the ROC analysis as feedback to weight-loss
participants could have a positive motivational effect on future
weight loss. Several recent studies have successfully applied
deviations from validated mathematical model predictions of
weight loss to provide participants with feedback to help shift
toward more positive weight-loss outcomes (25, 26). Because the
model predictions can have a potentially significant impact on
patient compliance and enthusiasm along with influencing the
commitment of health care providers, it is crucial that the pre-
dictions are rigorously validated. Going forward, it will be es-
sential for independent analysis of additional data sets to confirm
the approach presented here.

In conclusion, the newly derived thresholds provide an
opportunity to identify participants undergoing dietary inter-
ventions who are likely to achieve successful long-term weight
loss within the first 3 mo of a weight-loss intervention. Appli-
cation of the dynamic mathematical model that predicts weight
change and inclusion of demographic variables provides
thresholds that are personalized to each individual. These results
can be applied by health care providers to modify treatment
strategies in a timely manner.
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